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ABSTRACT ~

Consider the hypothesis HI :81 0 82 " Ok regarding a collec-

tion, Bie. of unknown parameters. It is clear that this trend

is reflected in certain possible parameter sets more than in others. A

quantification of this notion of conformity to a trend, which was sug-

gested by Barlow and Brunk (1972), is studied. Applications of the

resulting theory to several order restricted hypothesis tests are

presented.

i i
Jua't I f cti

By

2v::t -/

Df=t

'J~t~ J'4



!I

1. Introduction. Order restricted statistical inference is concerned

with procedures which take into account information relating to the magni-

tudes of parameters indexing the population or populations of interest.

For example, suppose 1 ,PI2  " ' are the means of k normal popula-

tions and suppose that it is known or suspected that they satisfy

Estimates and test procedures which take this information into account

were first studied in the mid-50's and a number of names are associated

with this work. Much of this theory, together with the history of these

problems, is discussed in Barlow, Bartholomew, Bremner and Brunk (1972).

Throughout this paper it will be convenient to think of a vector such as

P= 9 as a parameter. In case the parameter, p, is a

vector then p. will denote its i-h coordinate.

In hypothesis testing the obJective is to use certain experimental

results to either confirm or reject H1  or a similar hypothesis. It

seems clear that HI is more likely to be confirmed when sampling from

certain populations than when sampling from others. For example, if

k 3 then H is more likely to be confirmed when p = (4,2,0) than

when P = (2,2,2). It seems reasonable to say that (14,2 ,0) conforms

more closely to H than does (2,2,?). A quanti fication of this- notion1/
of conformity to a hypothesis would be a very useful tool in order

restricted inference. For example, in hypothesi:; tv.;ting, "good" test

procedurer should have error structures having monotone propert I C: when
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evaluated at possible parameters which are comparable under this notion

of conformity (cf. Section 3.4). In a Bayesian approach, one might search

for priors which assign higher probabilities to parameters conforming more

closely to the order restriction.

How can we quantify this concept? One approach would be through

distances to the hypothesis. Specifically, if H1 denotes the collec-

tion of points satisfying our hypothesis then for any point, P, we could

measure the distance from p to H 1 in some way. One problem with such

an approach would be that d(4,HI ) = 0 for all pz E If so that we could

not distinguish between such points and clearly some such points conform

more closely than do others.

Barlow and Brunk (1972) mentioned another idea which does not seem

to have been explored in any depth in the literature. Consider the rela-

tion, >>, defined on Euclidean space, R , by x (x ,x ... ,x)

y = (ylY 2 ,...'yk) if and only if

(1.2) lxj y ; J=l1,2,--,k-1

and

(1.3) xi ly..

It is obvious that >> is related to the concept of stochastic ordering

and it. is straightforward to verify that it is a partial order.

Let C be the subset of Rk  consisting of all those points

x = (x, ''. ,xk) such that x 2  - 2 xk . If both x and y

lie in C theni x >> y is equivalent to "x majlorizes y" in the Schur

';n"e (ef. Hardy, Littlewood and Polya (1073)). Schur majorization has
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been used as a quantification of the notion of dispersion. Thus, if

x >> y and if x,y E C then, in some sense, the coordinates of x are

more dispersed than those of y.

k
Viewing C geometrically as a subset of Euclidean k space, R k ,

it is a closed convex cone. It is reasonably straightforward (cf. Theorem

2.1) to see that x >> y if and only if y-x is in C , the dual cone of

C, (cf. Barlow and Brunk (1972)). The cone C* is the set of all points

z E R such that the inner product LX.z., is nonpositive for all

x E C. The cones C and C* together with an arbitrary point x and

[y :y >> x1 are pictured in Figure 1.

C

y >y x]

Figure 1

This geometry suggests a second quantification of conformity, namely

x << *y if and only if y-x E C. We will have this second quantification

in mind and also explore its properties.

Consideration of the case k=2 is also informative. The set C is

simply the set of points pictured in Figure 2 which lie to the, lower right

of the diagonal line x2  xI. If x,y E R2 and if x >> y then (.)

requires that x and y lie on the same diagonal line (havinl slope -I)

,,I



X2 1

y

(x; X >y]
C

x 2 x

Y 2=Xl

Figure 2

and (1.2) requires that x is to the right of y. Thus if y E C then ,;u

is x and x is "deeper" in C than is y. If y f C then x it closer

to C than is y. The set. Lx; x >>* y] is the set of all point.- which

lie to the lowr right, of the di a orial lino throutgh y ,:tvi # 3, " .

In Su'f. on U, proprties of the parti:L] al ,rhe , <<, are leveloped.

In Section 3 we prove two preservation theorems which sy tbat if a funri-

tion is isotonic with respeet to this partial order, if a :t At., tio i.;

formed from the data using this-, function, and if two latraineter value, are

ordered by <<, then the "larger" parameter value produc,e the latrger

expected value of the statistic. Several example,' re n,.,ider,d il Vet'-

tion h. Tn Example 14. 1 the preservation t,heorens developed in T1e1 i 1

/
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are used to argue monotone properties of certain power functions. In

addition, those preservation theorems are used to argue the least favor-

able status of certain parameter configurations for tests where the null

hypothesis is not simple. In Examples h.2 and h.3 testing problems are

considered where one of the hypotheses imposes a relationship using <<

on two parameter sets. It is interesting to note that the chi-bar-

squared distribution, which is used extensively in order restricted

hypothesis testing, arises again in this context.

2. Properties of >>. The following theorem is proved in Section Four

of Barlow =rd Brunk (1972).

Theorem 2.1. If xy C HRk then a necessary and sufficient condition for

x >> y is that

for al' ,: E C.

Remark. Tf A C- R k  d if A has- a lower bound with respect to >>

then A has a greitest lower bound.

Proof: The greatest lower bound is the vector L (Lll ,1 Whose

coordiriate: art the solutions to the k equations

I +" +t. infty + +y y (A)- 1 1,, .
A I1n_.
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It is convenient, at this point, to introduce some notation. Let '
denote the norm on Rx defined by Fr e 2 p

let P(xJC) be the point in C which minimizes h(z) = I;x-zl 2. The

point P(xJC) is termed a projection of x onto C and properties of the

operator P("IC) are discussed in Brunk (1965).

Theorem 2.2. The point P(xJC) is equal to the greatest lower bound of the

set of all points z in C such that z >> x (i.e., P(xIC) =

inf[z EC; z >> x).

Proof: Let x = P(xlC) = (X x 2,...,k) and note (by (2.h) of Brunk (1965))

that x E Cz EC; z >>x] so that this set is nonempty and if x is a lower

bound it must be a greatest lower bound. Let x1 x. > xi 1 +'1 1+

x. > ... > x. + x so that x has a level sets. Suppose
12 1 (iMi

y E C, y >> x and ir +1 j < i r I . Then x= (X +1 +.+Xir+ ] )/( r + l -i r

and using well known properties of x, we write:

- ir  (-i) ir+l
1=1 1 il r+l r ii+l

= -i 1 r + 1 r r+l

- r [-r] i=l ir+l- 1r

r+] r J"= r l r il

-i ] i + i r+1 r i

ir  J-i ir+ly  r+i- r iz +.

ir J-i ri=l Jrir i1=ir+1 i

j
= .1 Y i"

L =z,
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The last inequality is because yl > Y2  ... Y so that the average of

the values of y. over i +1 to j is at least as large as the average

a r

over i +1 to i It is well known that x. x. so thatr r+l" * ~

since j is arbitrary, this completes the argument.

Corollary 2.3. If x >> y then P(xIC) >> P(yC).

Proof: This follows from Theorem 2.2 and the observation that

[z EC; z >>x) C (z EC; z>>y.

Note: The above result does niot follow from Theorem 7.9 in Barlow et al.

(1972) since their (7.19) fails for >>.

Rk
Definition. If f : k R then we say f is ISO if and only if x >> y

implies that f(x) > f(y) (i.e., f is isotonic with respect to >>).

Note that any function which depends on x1 ,X2,.. ,Xk only through

k
x. is ISO.

Theorem 2.4. If x,y E Rk then x >> y if and only if f(x) > f(y) for

all f which are ISO.

Proof: Use the fact that the function g(x) = x. is ISO for all j.-- i=l

For any function f of k-real variables let f. denote the partial

derivative (if it exists) of f with respect to the i h vriable.



Theorem 2.5. If the function f : R - R is differentiable and if

f.(x) a f i+l(X) for all x and for all i : k-l then f is ISO.

Proof: Suppose x << y. Using the mean value theorem there exists a point

z on the line segment joining x and y such that

k
f(x)-f(y) = (x.-y.)f.(z).i=l xi-Y1

Our hypothesis implies that the point (f (z),f 2(z),.--,f k(z)) is in C so

that f(x) < f(y) from Theorem 2.1.

Example 2.1. Chacko (1966) (cf. also Robertson (1978)) studied a likelihood

ratio test for testing the equality of a collection of multinomial parameters

when the alternative is restricted by the trend H n 2t . .2 . Z. ;k
1 .2 *k'

Theorem 2.5 can be used to show that, the power function of this likelihood

ratio test is ISO on C. Suppose we have a random sample of size n and

that the resulting success frequencies are X 1,X2 ,'--'X k  (i.e., the random

vector (YX2v'- k ) has a multinomial distribution with parameters

n, ,pl,2 ,'p 
) . For each positive integer m, let A be the set of

all k tuvles of nonnegative integers whose sum is m and let

B I( , p z 0; i =1,2,'.,k, =1)
k iil

Theorem 2.6. If f(-) :A -- R is ISO then h(o],ro''k) =
nk

Eff(X 1 ,X2 ," ,Xk)I is ISO on B.

Proof: Fix i and consider the partial derivative,

*J
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nx 1 x. i xkh.(p) = f~x W (X x) i P1 P
XEAn X 1 ,x 2 ,'" k " 1 i k

y~i y n( n-i ).p YR
= A f(y Iy 'Y + 1, ' ' ' 'y k " n .. )Y n- ) ... p '.

YEA 1  1 1 k Y1 1' Yk 1

Thus,

h.(P) -h. P) = 2 [f(y '''Yiy+1, ' '' yk ) -f(Y l''y J+],''Y ]1
1 E 1 1n-k

+1,...,y ) >> Yll*'I +1 . ) fo allk

n-i ~ '

and if J >1 then (yl.Yi,.,yk) >> ( yyk for all

y E A The desired result follows.

In testing H0 : = k -  (ii,',I) against H I-H 0  the likelihood

ratio statistic TO1 = -2 In X =2 x. in x. - 2n In n + .n In k where

x = (XI,''',,X) = p(x C). In order to show that the iower funotion -,f'

T is ISO, it suffices to show that the function .. x. II x.
011

S in x. (cf. Corollary 3.1 in Brunk (1965)) is IS

on C. But x >> y implies that x >> y by Corollary . c' that it iuf-

fices to show that the function x. In x. is ISO on C. Consideri=I 1

a = X+6, - ' , x
k ) and b (x_',',x.-'+6, -  xk ) where x E C,

x. > x., i < j and 0 < 6 < x.-x . It suffices to show that

k k
a. in . > i. b. In b. . However, the difference of these two sum:s can

1~ i=i 1 1

x.+6 X.+6
be written 1 (1C + in y)dy - f 'j (I + In y)dy, whi ch it- inonnerative by

our assumptions.

Thus ;n testing H0  agains"t 11 -H0  the likelihood ratio tiot i :;t10t
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has a power function which is ISO. In Section Four the preservation

theorems presented in Section Three will be used to obtain additional

results of this nature.

3. Preservation Theorems. The theorems in this section have a number of

potential pplications. They can be used, as in Section 4, to argue that

the power functions of test statistics which have been proposed for cer-

tain order restricted problems are ISO. Also in Section 4 they are

used to nhow the least favorable status of certain parameter configurations

in problems where the null hypothesis does not completely specify the dis-

tribution of the test statistic.

Theorem 3.1. Suppose [PL; XEA is a family of probability measures on

the Borel subsets of R , where A C Rk . Assume that if a k-dimensional

random vector X has distribution P then X-X has distribution Q
Rk __

where Q is independent of X. If f - k- R; if f is ISO and if

h : A- R is defined by

h() = Rk f(x)dP >(x)

then h(') is ISO on A.

Proof: Assume X >> 6 and that. both belong to A. Using two chanF( -.- , of

vvariables we write
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h(X)-h(6) Jf(x)dP (x) -If(x)dP (x)

: j[ f(y+X) - f(y+6) ]dQ(y)

which is nonnegative since y + X >> y + 6 for all y.
!q

An analogous result holds for <<*. More precisely, suppose we say

that a function is ISO provided it is isotonic with respect to the par-

tial order <<*. Under the assumption of Theorem 3.1, if f(') is ISO*

then so is h(-).

The proof of the next theorem is an adaptation of the argument given

for Theorem 1.1 in Proschan and Sethuraman (1977).

Theorem 3.2. Suppose A is a subset of the real line which is closed

under addition and assume that (*,") is a nonnegative function on A X R

such that 0(a,x) = 0 for all a and for all x < 0. In addition, assume

that 0(-,') satisfies the semigroup property with respect to Pi on the

Borel subsets of R (cf. Proschan and Sethuraman (1977)). (We assume

that p is either Lebesgue measure or counting measure on the nonnegative

k Rk
integers.) Suppose f : --+ R is ISO and h :A - R is defined by

h ) -- a "Sr~l 0( d~ . ~~k

where the integral is assumed finite. Then h is ISO.

Proof: The argument for k = 2 is similar to the proof of Lemma 2.1 in

Proschan suid Sethuraman (1977). Wr proceed by induction. Assume k >_ 3

' (



and (ala2'. ',a k ) >> (bl,b 2 ,'. ,bk). Define c E Rk  by c, = b1l

c a2 = a+a-b, 2 3 + 3a b..ck = a . Write h(a) -h(b) =

h(a) -h(c) +h(c) -h(b) and consider, separately, the two differences. The

first difference can be written,

h(a)-h(c) JS..Jff(x)0(alXl )(a 2 ,x )dp(x )dp(x 2 )

- Jff(x)(0(c 1 x) )c 2 ,x 29 ( l )dp(x0 3 ¢ (a. x )daI(x3 )" "dp(xk).

The quantity inside the brackets is nonnegative by the case

k = 2 since (aa 2 ) >>2 (c le,c) and since with x -,x k  hd Li xed

the function f(-,',x 3 ,x 4 ,' ,x k ) is ISO on R'. The second di fference,

h(c) -h(b) is handled similarly using the induction hypothesis, the fact

that (cc. 3 .. 'ck) k>>- (b),b 3 -',b ) and the fact that with x] hld

k-i
fixed f(xI *,*, *",) is ISO on R

Corollary 3.3. Suppose X is a k-dimensional random vector whose distri-

bution, 1'.. is paraneterized by the vector L = (X1], X,',Xk), where

PX satisfies, th.- hypotheses of Theorem 3.1 or PX  is. abso]utely contilnuou!;

k
with respect to the product measure UIx'x ,*XP an, i: : it'a.'I t xi(

i=l
where o( ,-) and PI satisfy the hypotheses of Theorem 3.?. If the ran-

dom variable T is defined by T f(X) where f is ISO then for any

real number a

Px[T- a PX, IT-a]

whenever X X.

.... . ..... d'A "-I,..



Proof: Note that any nondecreasing function of an ISO function is- T SO

and that I. isnondecreas inrg.

An alternative way of statinrg the conci u i on of' Chi: c'orol 1 try I,.; thnt

the distribution of T wider X is; stochitsti cal ly 1larger than i t.s. di stri -

bution under Y' . If T Is a test ;tatistic for ti test. which rejects for

large values of T then this conc Iislion state-n that, T luua an wi 1)

power function.*

I.Appilications.

Example 4i. 1,suppose we have indcepenldenlt random snpe from eatch o t k

population.- Indexed by the parameters 01 Wt0iA o oi

cxpe rimenta 1l resil ts tco test th hypothes-is,

H100 0 0 k

agint t ho alt erriati vc H 1 o% 1,11e. H bt. not, 1i whr

A number oif s-tatisti.i ; have been propoosed for thlis tes t. One to oII ect i cm

wh i ch has been extens ive ly exploreid i!-s ba.--d on thie ki Ife rverre-0

wi th i <,I where I. tin estimate of 0. (cf. Sevti on 14.:1 in B~arlow

et it . ( '(:) ).For example v, i f 0. is-- the mcui of' at normal popul nt,ion

then 0 mi ght be the twuni 1 mean of the s runp Ic from that. popu ilation.
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Now, for tiny y , h(y) _ y -Y ~ ) (k-i +i )y. ,, th.iat, i to:

i = I j i+1 =

stat istic , formed from ti(-),* is it spec jul eat of ait cn e gn

S= cC, where, 0 1 zC, 0 k tiare prespeci fi lcontn Th. 1'he fa'

that the function s,( Iy )y" -kCV I 'Ot ow;1nm i

from Theorem 2..The theory in Sect. ion onc a be appli ed . ~ns

is the s ampl e meain of' at random samuple of s IT~ from n ~l iwT'M? at

hafving meanl 0. i=l,,1 ,k. The I oi t d tciu o f( .... it -

ist'ies the hypothesis of Theorem i. I s~o that. the fuI't i on 1( 0 loW '' 0

0 ('1) i SO. III other words we wo-Ul d e xpjw -t ln a ,r'~ Va! ll,'

when ;a-up I i Tie f rom populat ions wi th1 palrJum't er:. ii iu mi, c.' lv I

if I. In add it.i on the tetrejects-, t for 'g vall o ; ofW o! a

Corol lary 3.- 3, the power f unct. in of S t ISo .

Ass ume that, 0. is thle mean of at Poi: s sonI poli'u 1:t1 ionl "u"! halt C

its tllhe mean of. a Lsamuple of 'ize n1 from that popl at1: ionl; i = i k7.

The random variable nO. has a Pi-son di st.rilbiit i on :uid i spm'a i it\

funct ion stisf the hypothesis impos~ed oil ,. ill iTeorm N..

Tu,,E 0 [Ls ( n 1 ,l,,"I0) = E 0 [ aZ zi I '0Ul lt

power funct i on 11* the stat istic ;( 01 1 G. Ok ~ T

A second class- of' tecst. procedures, whicllhaIjVI beetl t-xt.ens iv1v ol Xj ~

in t.he literiatur is; based upon an I di st. ance bet-Wee: I 'st :.!Ilt~5 t i:.

fyinrg till) alternative hypotheses.. ',peoificailly , it' 6 is- ainlltl''ttit

etst. imate ef' 0 t-heni n =f I /k 4.. 0. mni glit. be Itre I'isoT I I I c' ts il mat oft

th11e conon Valuie of 0. w ider If W 0 ( l)sti;fi tsl 11 and Would

be' ri ron'asiuabl e v5t imiite o1f 0 :;at it;fy inf t hi :s me;f r i Mt i (il . Ill ftkl , Til

k
ks the' proxtecet. ion (if' crnto ~he c'ol (Itfi on )f' pij it: 5 x ill I

t-hat. x X, * = ) A tet. coul (i bit bas;ed uplonf he :,ta

LL.i
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T = L ( -)
i=i

Theorem 1
j. If y = P(y]IC) for eact. y ( f~k thet tL,. ffun't ion , I (.

k
def ined on R y

t(y) - _ y. _- y ,

i:; ''(T .

Proof: Sups;v y >> x. For any z E C we have, by Th,.rm .

ff (x.-y ." -- = (x.-y. )z. + L (y.-V. ), i  2 .:i,... :, < v. ,Pt, -
(1 x 1 1 1

x -y E C and usinp Section 4. , of Barlow and Brunk (t'.) w. .)t i..

ilx i  :=I Y This yields the desired result ::ice

-- 2 V 2
t(y) = k- y. and y >> x impI~u; that .. =i=I i=l1 i"i =

Thus, the theory developed in Section i 'an be fiat ie" I !7t,, i: i':

bised upon the function t('). If the population in bx, by 0. i rm
2I

with mean 0. and known variance 0 arid if 0. . Y :,unIe m-t "1 1

s'mple of size n from that population then T = ') i2 : ik, i .(fl

ratio statistic. The distribution of T01 under ir i: known (,p*f. iAr],)w

et al. (ia'n)) ard the joint distribution of 0sit ,1fi .

hypothesis of Theorem 3.1. Thus th- power function of Tl i!:; I;( ;:; t

function of 0. As with S, similar conclusi ons (-',in be irawh u ' :t,,-

tistic based upon t(.) under other distributional t)Ylumptiuo; O th,,

populations. Similar conclusions can be drawn about th,, 1ikelihoed ratti

stat. i ;t E- ivon in Barlow et al (1972) when the popultri i ri'ir''

• i u; ui~kilown.

' " " - ;- a_ o .. j.: , .. , . , I- , . . . . - -,,I.
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A third statistic which has been proposed for testing H0  against

H -H is the number, L, of distinct values among Let
1 0 2 Let'

£(y) be the number of distinct coordinates in the point P(yjC). If

k =3, y' =(2,1 ,-3) and y=(7.-4,--3) then y >>y' while 1(y) = 2

and (y') =3. is, of course, does not directly imply that, the power

function of s.tatistics based upon C() are not, TVO. However, if 0

is a veotor of location parameters and if the populatior varia!,ces art.

very 'mal.1 then w,. could conclude that power funictions- of stal :stiC;; based

upon aro not ISO.

Rober s-on aud Wetr nan (i78) consider the nrohIorm of testinp HI as a

null hypoth.sis . Consider the test statistic T -h wh i('h i s the

Ijuar -. of *-n' Jistance between the unres tri cted estimate 0 -i d the

krtstrietet est.imate e. Define the function t (-) : R - H by

t. (j) - I C A onsequence of Theor,,m .] in .hubert son and

Weman V i) is that t P(-) is antitonie with r,csp,.ct n the partial

ord,-r << . It follows from the theory in Secti,-n 4 that, under the proper

assm;nt. ion: on t.,( populations, 0 << 0' imFli.'; t t: . 1 F] ,P
1.P 0 1" T I

.t,,l P0 L 1  I 0 , 2 > for all t, (P 0 (E) dro t,: th, nrobabi i y

-f F. ral-ulatl un(der the assumpti ion that. e ii- tht, poulati-n vMt.or

of parameter.-s)

Now ,f 0' (&,,' ,') ha:; th, ;;roprty tho 0' 0' .

then 0 > 6' f)r till I C C. It, fiol),.,w:; that. ho1'op'n.' y (i1.., i}

i.; les t fftvcrable, for T wit hin V.. Pi.:: f' th, ii :t ri but ion of T]

under H0  is known then con:servative roc'retion r -rjn;; ,' o n t.'rcwte,

In the normal mean.; problem, TI ha" a -h;-bar-'lured di.t ribut.i)n

under V

"(
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As far as we can determine, the next two examples have not been

explored in the literature. They are two additional restricted inference

problems where the chi-bar-squared distribution arises. In fact, the dis-

tribution encountered in Example 2 is a continuous distribution as con-

trasted with previously explored X distributions which have a positive

mass at 0. In each of these examples if the underlyinF distributions"

are normal the estimates turn out to be maximum i ik.-ihood and the test

statistics are likelihood ratio statistics.

Example 4.?. Assume we have k populations which are comp]etely :peci-

fied except for the values of k parameters k  indxir g th.,

populations. Suppose T is known, is a possibility for 0, and that we

wish to test the null hypothesis H1 : >> T. This hypothtsi.s i,. not

simnle, in the sense that it completely specifies the distr'bution of thf,

test statistic of interest. However, the theory in Section Thr e can be

used to show that H0 : 6 = T is a least favorable confiruration within

H . Moreover, the distribution of our test s'tatistic iis completely sped-

flied under H( and turns out to be a chi-bar-sjuared dis. tribut ion. Details

of thi,-, analys-is follow.

Assum, that 0 M (01 . ) is TI good unrestricted es.timate of 0.

The first nrob,lm is ,,o f;nd an estimate of 0 which satisfies our null

hypothesis. The hypothesi! , I , can be writ ten in t.erms: of the Fenche I

dual C of the cone C. Specifically, H1 : -GE C so that we con-

sider an estimate, 0, which minimizes 1(0) = Y(0.-.)" subject. to

T-OEC*. This is h; equivalent. to minimizing [(T. -0.)- (T.-0.)J'
i=I ~1 A1

.. .[.
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subject to 7-6 C. The solution for T -0 is P(T -IC*) so that

(4.1) -8 : -P(r-1C*).

Now, P(yIC*) = y-P(ylC) (cf. Section 4.3 of Barlow and Brunk (147'))

that another way of representing 6 is

(4.2) - +P(T-61C)

A third representation for e can be obtained by considering the .;,,

A = (z; z >> T) which is a closed convex subset of R (riot, 1i

Suppose z E A and consider

(8---) = (P(T--e),( -7) -P( -^1)) - (P(T- "),T - Z)

using (4.2). The first term on the right is zuro and the ., o rm i .

nonpositive since P(I-ejC) IE C and -z E C*. It fol!,w!- from Tij-orm
. of Brunk (1Q65) that 0 = (OIA).

From Theorem 2.3 of Brunk (1965) the project. i, n operat ,r P(. JA) i 2

continuous so that if 8 is a consistent entimat,)r of 6 1 h(n , i:;

Now, let's turn to our testing problem. CoTisidr th,, t,*, I.t :iejt ic

T = L. (0. -8. )2 for te.-ting H apairnft - . I:'inW (4.,)
12 i 11

T HT - 5 1c) and it ifs argued in O.t p r o'f t)" .,horer ., I ',T]2 j= .'

the function t(y) "k L P(YlC) is ISO. I,,t Y =. - . i = ..

and (assuming 6 is unbiased for 0) 1,.t v. = F(Y. -- - C v.. Mi ri,
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the required assumptions abOut. the underlying populations tuid using Corol-

Iary i. i we ee that if 6 << 0' (i e. ,v >> v' ) then P t. I

T p CT Z! t Now~ 03 T for all I satin-f'ying HI so that, for :-u('h

p, ,I, ~ t. p [P 2:t I.Thusn, it) tet;tinit I 0 >> T, the, .-ubliv-
12

po thess I T ' is least favorable and if the diP;tribution of T1,

(can be determi ned under IfH then con.,e rvat i e r it i eal t'egj otim O,:ii he con-

s truv t ed.

Conl, it-er t hie no rmtaI me ano prot) eM t i it ei . :, th dir 1 but, i onl (-orre --pond -

ing to i. i rnormal1 with mean 0. and var iance d" , whik-h 1- known,

nd(. :the mnt mean from the, i popiil at ,in) . Let Y =-k Y.l

Thet d~intriblutiOri , undier H1 , of' R (nl/Cd)L MPY 10) - Y i.-in, from
i = I i

'torem I in Barlo e Wt R I. (I'? a ohI i -b itr-skquared . Mo reo(-Ver ,

/0 ) H + k n /C" ) n ht (a 6'T i tie n um of two inidevenderit

1,Z 11d~ (M V tr al) I e , on I hay iv i t#7 a n. tay n r d k Ii i - it on retd kdi i* tr i 1) uit, i on " LTidk t he

"t her ntfvi in hi h-bar-oqkuare-d d 7n-t r ibut ionl 'te follow itn 7 t heorerrl 't

'Iltheom 4.:. 2u11,pne( we have randomt snmplt-en of n z !' romv t-:h of k

nor-ma Il 'on:: I !it i n1w hav i nt mean:: 016.. 0 k3 1110 ": hovi nf- v~ri-iline

C knownl let t' b t hv 1i kt I i h ood r,%t io It ot j -et i eo r i I tel :&iw t,

f~r ni i, 1 >> T !toAin:;-t all I ilternat ive:; 'fliei

for at 1 re-il t where I'( 1,k )i !i gi ven tl the rct'urni en f'ormulan 171corol -

I try H un, Xeg lit o iBrlow et. atl . (I~

It. i'eeninr to ii-tt' thait 'L iil,iiri 1rutioni
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differs from those previously studied in that it is absolutely continuous

and the others have a positive mass at zero.

The statistic T= Z~(-*i)2 might be used for testing H

against the alternative H -H In the normal means problem the statistic
10'

(n/a2 )T (n/2) i  (Yi-P(YIC)2 is the likelihood ratio statistic
i 1

studied by Robertson and Wegman (1978) for testing the null hypothesis

E(YI) 1 E(Y2) . E(Yk). It follows from their results that under

2
H0  (i.e., E(Y ) 0; i =l,2,--',k), (n/C )T01  has a chi-bar-squared

distribution. Specifically, P[(n/2)T 1-tI P(,k) P[_ 2Z t ,

provided H0  is true.

Example 4.3. Suppose we have a random sample of size n from each of

2
2"k normal populations, each having variance C (known) and with means

, ,Vk . Let the corresponding sample means be

XlX 2 ,-..,XkYlY2 ..- ,y k . We consider testing the null hypothesis

H1 p >> v. As in Example 4.2, H1 does not completely :;, tcify tlif di:'tribu-

tion of cur likelihood ratio statistic. However, H:=p=v .e- f:1v.,ral4

and, under H 0 , the distribution of our statistic is a chi-bar-squared.

Details are given in the next few paragraphs.

The first problem is to find the maximum likelihood estimates which

satisfy H These estimates minimize L(i,v) = i+-) 2 + (v-Y-) 2]
1' i- 1

subject to HI

Theorem 4.5. If (p,v) are the maximum likelihood estimates subject to

H then

P1
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+ x. +y..

th

Proof: Consider the i-- term in L(.,.) and suppose (pii.) I (xi .
-2 -2

Let g(e) = (p i+e-x) + (vi+C-Yi) . Consider g"(.) and note that if

g'(O) # 0 then there exists an e 1 0 such that

L(".. 2 "'"'i-l'pi + "l'LV, 2 "".' Vi +E :''',Vk) < L(I,v). Moreover,

if (p,v) satisfies H so does this new point. Thus at (p,v), g(0) =0

for each term and the desired result follows.

Thus vi = xi -pi +y i  and our problem reduces to finding p. Spe-

cifically, we wish to find pi which minimizes

A(p) = P. (x.-p.)2

subject to the restrictions

-aE 2p. (X +,V)
j~l = j=1 J

i =1,2,',k with equality when i = k. It is convenient to recast our

problem in terms of 6 and z where 0 = (p -x ) and z, = (Y -x

i = ,2,",k. In this notation we wish to minimize 02 subject to

the restriction Z=l(z - ) 0 i l,2,"-,k with equality for i k.

This is equivalent to requiring that z- 0 E C . By Theorem 3.4 of Barlow

and Brunk (1972) the solution for 0 is e = P(z c). Thus

(4.3) Y P( - X c)i  + i

vi = Yi - P(zM2 C)..

--

: tI
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Now, returning to our testing problem, if X 12 is the likelihood

ratio for testing H1  against ~H 1  then T12 = -2 In l2 -

2 k --- 2 _ _
(n/2C )' P(y-xjC). The random variables Yi -x.; i=,2,',k are

- - 2
independent and yi -x '. -7X(iV-Pi , 20/n). Thus as in Example 4.2, T]2

has a chi-bar-squared distribution under H0 := and H0  is least fav-

orable within HI, using Corollary 3.3. Conservative critical regions can

be constructed.

If X is the likelihood ratio for testing H0  vs. HI-H 0  and

T -2n then this statistic can be written
01 01

T01 = (n/20)i [(Y -x) -P(y-x!C).1 2 .

It follows from Corollary 2.6 of Robertson and Wegman (1978) that, wider

HO, TO1 has a chi-bar-squared distribution. Specifically,

P[T Zt] = e P(L,k)P[X2 k :t.

01 £=k

5. Weighted inferences. The assumptions of a common known variance and

equal sample sizes can be relaxed in some of the distribution theory in

Section h. We define a weighted version of the ordering <<. Specifically,

suppose v1, S,,2,..., are positive weights and define: x >>W y if and

only if L . y.w. for j =1,2,''',k with equality for j = k;
i= 1  1w 2i=1 1 1

f : R, - R is ISO provided f is isotonic with respect to <<W;

(xy) x.y.w.; = (xx) ; P (xIC) is the projection of x
WU 1 1 111 LL (U

onto C with respect to the norm l~i and C*U = [zE Rk; (x,z)(< o

Vx EC. The characterization result, Theorem 2.1, becomes x >> y if

and only if y-x E C* L and the results of Section Two are valid for this
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weighted ordering. The analogue of Theorem 2.5 says that fi(x)/W i

f i+l(x)/Ui+l for all x and for i= 1,2,-'',k-1 implies that f is

ISO . Theorem 3.1 and the corresponding portion of Corollary 3.3 are valid

in this general setting.

In Example 4.1, if 0. is the mean of a normal population with var-1

2
iance a. and if 0, is the mean of a sample of size n. from that pop-

1 1 1

ulation and if u). n./C. for i=l,2,.,k then s (as defined in that
1 1 1

example) is ISO and the power function of the associated test is ISOw

provided ci/wi > ei+i/Wi+l; i =1,2,-'1,k-1. The likelihood ratio sta-

tistic for testing H0 : el =a2 .. 2 k  vs. 1-H, where H1 :0 102

k 2 2
>"":> is T = M.-) where m = .0l 1 u). and

k 01 i 1 l11 1

e P (01C). If one modifies the proof of Theorem 4.1 appropriately thenw

it is seen that the power formation of the likelihoo' ratio test is ISO

In the same example, the likelihood ratio test statistic for testing

1 1 vs. H R 1 is T .L i -P (61C) . The corresponding function

is antitonic with respect to << * and the least favorahle status for H0

within H1  can be obtained.

Similarly, the distribution theory in Examples 4.2 and 4.3 can be

obtained for the normal means problem without ass;umin equal wc-ights. One

complication in these results is that the coefficients, P(t,k), in the

chi-bar-squared distribution now depend on w1 ,w,.-. ' u~d can be dif-

ficult to compute (cf. Robertson and Wright (180)).

F.
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